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Abstract
Using the Kotliar and Ruckenstein slave boson formalism we consider the finite-U Anderson
lattice. We study the appearance of superconductivity as a function of the Coulomb repulsion,
density and f -level location for s-wave and d-wave pairing symmetries. The results extend
previous studies where the infinite-U limit was considered, confirming that superconductivity
remains as the Coulomb coupling increases, if the attractive interaction is not weak.
Superconductivity disappears for large U as the filling of the heavy particles approaches one, as
expected. Since U is finite, superconductivity occurs, in general, for any band-filling being
depressed near half-filling, particularly for d-wave symmetry.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Heavy-fermion systems [1] have attracted interest for a long
time due to the variety of phases they display, from Fermi-
liquid to non-Fermi-liquid, magnetic, superconducting, and
even coexistence of magnetism and superconductivity [2].
In the non-ordered phases the quasiparticles often display
large effective masses, depending on the regimes, but
complications arise probably due to the presence of quantum
critical points leading to unusual behavior at small and finite
temperatures [3]. A major difficulty associated with these
materials is the strong intraband Coulomb repulsion, U , in the
narrow-band associated with the heavy masses. In general,
this scale is the largest one and various methods have been
used to take care of the restricted motion of these particles,
such as the slave boson method, originally introduced to deal
with a limit where the Coulomb coupling is infinite [4, 5]. A
generalization of the method to finite U was first introduced
at the level of the Hubbard model [6] (where the same kind of
local repulsion occurs) and later generalized to the Anderson
model [7]. The method has been generalized to include spin-
rotation invariance [8, 9]. The method has also been applied
in the context of high-temperature superconductors [10, 11].
The Anderson model is generally accepted as appropriate
to describe heavy-fermion systems [12]. Using slave boson
descriptions both magnetic and superconducting instabilities

3 Present address: Instituto de Fı́sica Teórica CSIC/UAM C-XVI, Universidad
Autónoma de Madrid, E-28049 Madrid, Spain.

have been successfully studied [7, 13–17], as have their
competition/coexistence [18, 19].

In this work we will focus on the superconducting phase
of these materials. Using Coleman’s [5] slave boson formalism
together with a large-N approach, it was proposed [20] that
slave boson fluctuations can provide an effective attraction
between the electrons, to leading order in 1/N . Later,
a calculation of the quasiparticle–quasiparticle scattering
amplitude to order 1/N2 revealed an effective attractive
interaction in the p and d channels, which was interpreted as
a manifestation of the RKKY interaction, showing that spin
fluctuations are an important mechanism [21]. A magnetic
origin was also proposed in [22–24] and argued for in [2, 25].
The magnetic and superconducting instabilities of the periodic
Anderson model were also studied using a RPA method [26].
An effective antiferromagnetic interaction arises between the
local moments which can then be decoupled in various ways,
including terms that lead to pairing [27]. The magnetic
interaction is in general complex and involves the hybridization
between the local f -electrons and the c-electrons being of
the order of V 4, where V is the hybridization between the c-
electrons (nearly free, extended) and the f -electrons (localized
and strongly correlated). The complexity of the underlying
mechanism was successfully overcome using as input both
band structure calculations and neutron scattering data [28, 29].

Whatever the origin of the effective interaction, various
studies have been carried out imposing a phenomenological at-
tractive interaction between nearest-neighbor heavy electrons.
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Experimental results for the specific heat in the superconduct-
ing phase show that heavy fermions are involved in the pair-
ing. Due to the hybridization, the light (conduction) and heavy
(narrow-band) electrons are mixed into bands of heavy quasi-
particles with a predominantly f -electron character and, as
shown before [30], it is the pairing between the f -electrons
that is responsible for superconductivity. Note however that
the bare f -electrons are dispersionless and it is the result of
the hybridization that heavy quasiparticles become the pairing
quasiparticles. Therefore, in this work we will add to the An-
derson lattice Hamiltonian a phenomenological attractive inter-
action between the nearest-neighbor f -electron densities, with
magnitude J < 0, since these particles have the largest weight
in the heavy quasiparticles and since we will study both the
transition temperature and the superconducting phase (T = 0).
Clearly via the hybridization the c-electrons will also pair. We
will come back to this point later.

This problem was studied before in the case of finite
U using a perturbative approach [31] and in the U = ∞
limit a slave boson method [13] and the X-boson method [14]
were used. It was predicted in the perturbative approach
that for large enough U superconductivity disappears. Also,
in a regime where the heavy electron density is larger than
the light electron density, superconductivity disappears fast
as the band-filling increases beyond half-filling, due to the
saturation of the heavy electron band. However, using
the slave boson method it was found [13] that, for infinite
coupling, superconductivity prevails in a regime where the
heavy electron filling is smaller than the light electron filling.
This was confirmed by the X-boson approach [14]. In these
works the relative stabilities of the various pairing symmetries
were studied, and the basic conclusion is that the critical
temperatures for the various symmetries are in general similar
and the dominant one varies as the parameters of the model
change (see however [18, 19] where a quantum phase transition
is predicted for d-wave symmetry when antiferromagnetism
and superconductivity coexist). In this work we consider
the case of a finite Coulomb coupling using the Kotliar and
Ruckenstein slave boson approach [6]. We confirm the stability
of the superconducting order as U grows, in agreement with the
infinite U results previously obtained.

2. The model and slave boson description

The model we study is the Anderson lattice, with Ns sites,
where two sets of electrons, c-electrons described by the band
εk , and f -electrons described by the energy ε f , are hybridized
with an amplitude V . The Hamiltonian is given by [7]

H =
∑

k,σ

εkc†
k,σ ck,σ +

∑

k,σ

ε f f †
k,σ fk,σ + U

∑

i

d†
i di

+ V
∑

i,σ

(c†
i,σ fi,σ Zi,σ + Z †

i,σ f †
i,σ ci,σ )

+
∑

i

λi(e
†
i ei + d†

i di + p†
i,↑ pi,↑ + p†

i,↓ pi,↓ − 1)

+
∑

i,σ

λi,σ ( f †
i,σ fi,σ − p†

i,σ pi,σ − d†
i di). (1)

In general, the heavy-fermion systems are 3d-systems even
though in some cases quite anisotropic. For simplicity and

to reduce computational time we will consider here a two-
dimensional system since the results are qualitatively the
same, as shown before [13, 18, 19]. There is a Coulomb
repulsion U if two f -electrons are located at the same site.
We associate four bosons to the various states f -electrons
can occupy [6]. The bosons e, d are associated with empty
and doubly occupied sites, respectively, and the bosons pσ
with a singly occupied site with spin component σ . There is
an enlargement of the Hilbert space and restrictions must be
implemented at each site, e†

i ei +d†
i di + p†

i,↑ pi,↑+ p†
i,↓ pi,↓ = 1,

and f †
i,σ fi,σ = p†

i,σ pi,σ + d†
i di , through Lagrange multipliers

λi and λi,σ , respectively. In the physical subspace the operators
fi,σ are replaced by fi,σ Zi,σ where Zi,σ = (1 − d†

i di,σ −
p†

i,σ pi,σ )
−1/2(e†

i pi,σ + pi,−σdi)(1 − e†
i ei,σ − p†

i,−σ pi,−σ )−1/2.
The usual procedure consists in taking a mean-field approach
where we assume the slave bosons to be condensed. In
the cases of paramagnetic or ferromagnetic solutions we take
Z †

i,σ = Zi,σ = Zσ , e†
i = ei = e, d†

i = di = d , p†
i,σ = pi,σ =

pσ . The paramagnetic solution is described by p↑ = p↓ = p.
As a consequence λ↑ = λ↓ = λ̄ and Z↑ = Z↓ = Z .

We study the appearance of superconductivity neglecting
any form of magnetic order. We take a usual mean-field
approximation where the Anderson Hamiltonian with the
pairing interaction term added can be simplified to

HMF =
∑

k,σ

(εk − μ)c†
k,σ ck,σ +

∑

k,σ

(ε̃ f − μ) f †
k,σ fk,σ

+ V
∑

k,σ

Z(c†
k,σ fk,σ + f †

k,σ ck,σ )

+ Z 2
∑

k

(�ηk f †
k,↑ f †

−k,↓ +�∗ηk f−k,↓ fk,↑)

+ U Ns d2 + Nsλ(e
2 + d2 + 2p2 − 1)

− Ns

∑

σ

λ̄(p2 + d2)− Ns
|�|2

J
(2)

where εk = −2t (cos kx+cos ky) in two dimensions, ε̃ f = ε f +
λ̄ and we have added the chemical potential μ to fix the total
electronic density n = nc + n f with nc = 1/Ns

∑
k,σ c†

kσ ckσ ,

n f = 1/Ns
∑

k,σ f †
kσ fkσ . The pairing symmetry is selected

as either an extended s-wave or a d-wave, which for a two-
dimensional square lattice are obtained using ηk = 2 cos kx +
2 cos ky or ηk = 2 cos kx − 2 cos ky , respectively. In
some heavy-fermion systems the symmetry appears to be d-
wave but often it has not been unambiguously determined.
Therefore we consider here both d-wave and extended s-wave
since the strong local repulsion prevents local s-wave pairing
between the f -electrons. The generalization of the bands
and pairings to the 3d case is straightforward [32, 13]. The
mean-field treatment of the attractive interaction involves the
usual decoupling of destruction and creation operators but we
associate a boson operator, Z , with every f operator in order
to prevent double occupancy at the f sites (a similar procedure
has been used before in the context of the t–J model [33] and
in the Anderson lattice [13]). As discussed before [13] the
presence of the slave bosons in the pairing term is important
to describe the experimental results since in the infinite U
limit it guarantees that the superconducting order vanishes as
n f → 1. The same occurs in the finite U formalism. For
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large U one expects that Z 2 → (1 − n f )/(1 − n f /2), which
vanishes as n f → 1, as intended. In this limit we also obtain
that p2 = n f /2 and e2 = 1 − n f and the effective coupling
decreases, as expected.

The procedure now consists of determining the mean-field
values of the condensed bosons and the superconducting order
parameter using the Hellmann–Feynmann theorem by taking
derivatives of the Hamiltonian with respect to these parameters.
These derivatives lead to mean-field equations that have to be
solved self-consistently. Defining

FV,b = V
∂Z

∂b

∑

k,σ

(〈c†
k,σ fk,σ 〉 + 〈 f †

k,σ ck,σ 〉)

and

F�,b = ∂Z 2

∂b

∑

k

(�ηk〈 f †
k,↑ f †

−k,↓〉 +�∗ηk〈 f−k,↓ fk,↑〉)

where b = p, d, e, this leads to

FV,p + F�,p + 2Ns p(λ− λ̄) = 0 (3)

FV,d + F�,d + 2Ns d(U + λ− 2λ̄) = 0 (4)

FV,e + F�,e + 2Ns eλ = 0 (5)

Z 2
∑

k

ηk〈 f−k,↓ fk,↑〉 − Ns�

J
= 0 (6)

together with the restrictions Ns(e2 + d2 + p2
↑ + p2

↓ − 1) = 0

and
∑

k〈 f †
k,σ fk,σ 〉 − Ns(p2

σ + d2) = 0.

3. Bogoliubov–de Gennes equations

The solution of these equations requires the evaluation of
the various fermion operator averages. This can be done
in various ways such as using Green function methods,
directly diagonalizing the Hamiltonian operator by performing
a rotation of the fermionic operators as indicated in [19] or
through the use of Bogoliubov–de Gennes (BdG) equations.
These can be obtained in the standard way by defining

ck,σ =
∑

n

[uc
n(k, σ )γn − σvc

n(k, σ )γ
†
n ] (7)

and
fk,σ =

∑

n

[u f
n (k, σ )γn − σv f

n (k, σ )γ
†
n ] (8)

and the vector

ψT
n = ( uc

n(k,↑), u f
n (k,↑), vc

n(k,↓), v
f

n (k,↓) ). (9)

The BdG equations can then be written as Hψn = εnψn where
the matrix H is given by

H =

⎛

⎜⎜⎝

εk − μ V Z 0 0
V Z ε̃ f − μ 0 Z 2�ηk

0 0 −(εk − μ) −V Z
0 Z 2�ηk −V Z −(ε̃ f − μ)

⎞

⎟⎟⎠ (10)

The solution of these equations yields the energy eigenvalues
and the functions u, v needed to calculate any operator
thermodynamic average.

Figure 1. � as a function of band-filling n for various Coulomb
couplings for (a) s-wave and (b) d-wave symmetries (T = 0).

4. Zero-temperature results

4.1. Order parameter

We consider first the self-consistent appearance of super-
conducting order in the system by considering the zero-
temperature order parameter. In figure 1 we show the or-
der parameter � as a function of band-filling for various val-
ues of the Coulomb repulsion, U , for a typical set of values
V = 1, ε f = −0.5 and for an attractive interaction between
the f -electrons, J = −3. We take as the energy unit t = 1.
We consider both extended s-wave and d-wave symmetries.
For these parameters, when turning off J , the system is in a
metallic phase. Turning on J the system may become super-
conducting. For intermediate values of U (such as U = 3) su-
perconductivity is present in a wide range of band-fillings. At
low-fillings the order parameter vanishes because there are not
enough electrons to pair. As U increases there is a depression
in the vicinity of half-filling (n = 2) which is particularly no-
ticeable in the d-wave case. In the s-wave case and for U = 6
there is a total suppression of� near n = 3 but then it becomes
finite as n grows further.

In order to better understand these results we present in
figure 2 the values of the Bose condensates for the s-wave
case (the results for d-wave symmetry are very similar). As
the band-filling increases the number of empty sites decreases
to zero and the number of doubly occupied sites increases
up to saturation if U is small (U = 3). However, if U is
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Figure 2. Various parameters p, d, e, � as a function of band-filling
for U = 3, 10, 100 for s-wave symmetry (T = 0).

large the number of doubly occupied sites is very small, as
expected. For large U at large band-filling all the sites are
singly occupied since also the number of empty sites tends to
zero. However, for n > 3 the number of doubly occupied sites
increases implying an occupation of the upper Hubbard band.
The figure also shows the superconducting order parameter,
�. As U increases � vanishes for intermediate values of
the band-filling, as expected. Note that even for U = 100
superconductivity prevails up to n ∼ 2.5.

One would expect from previous treatments that, for large
U , superconductivity should disappear near half-filling (n =
2). The reasoning is that at half-filling one expects that n f = 1
and the motion of the Cooper pairs is inhibited. Note however
the strong increase of � for U = 10 as the band-filling n > 3
(the same happens for U = 100, not shown). The values of
n f , nc, μ are shown in detail for the case of U = 10 in figure 3
for both symmetries. We see that when n = 3 the filling of
the c-electrons saturates. Also, we see that for n ∼ 2.5 the
filling of the f -electrons is already very close to n f = 1.
Therefore we expect that � ∼ 0 at this point. We see also that
in the d-wave case there is a jump in the chemical potential at
n = 2 which indicates an insulator regime and a consequent
vanishing of �. Also, we see clearly that there is an abrupt
change of μ at n = 3. At this point there is a jump to the upper
Hubbard band with a high energy cost. The reappearance of
superconductivity is due to pairing between electrons in the
upper Hubbard band. It is therefore a high energy phase and
the non-superconducting phase has a lower free energy. We
have compared the free energies of the three phases and have
found that in this high filling regime the � = 0 phase has
the lowest energy. In the other regimes either the s-wave or
the d-wave phase are the most stable (we note that the non-
superconducting phase is usually the second lowest energy
phase).

The stability of superconductivity at increasing Coulomb
couplings is in agreement with the results obtained by
the infinite-U slave boson method [13] and the X-boson
method [14]. The results are however in apparent disagreement

Figure 3. n f , nc, and μ for (a) s-wave and (b) d-wave symmetries
and U = 10.

with a perturbative calculation [31], as previously emphasized
in the infinite-U limit. We note however that the results are
obtained in different parameter regimes. In [31] the regime is
such that n f > nc. As the Coulomb coupling U increases
n f → 1 preventing the motion of the Cooper pairs and
effectively suppressing superconductivity. In this work, we are
in a regime where n f < nc and therefore while n f < 1 there
is room for a non-vanishing order parameter.

4.2. Spectrum

Complementary information about the system behavior may
be obtained by the excitations spectrum. Due to the
superconducting order the spectrum has a gap that tracks the
behavior of � in the s-wave case (in the d-wave case this
occurs away from the nodal directions). The gap (defined
by the lowest positive energy eigenvalue) has a maximum at
half-filling which decreases as U increases. The gap is the
result of various effects like the superconducting order and the
hybridization. There are two other peaks, one slightly below
quarter-filling and the other for small values of U (say U = 3)
at large band-fillings (say n ∼ 3.5). These peaks in the gap
agree with the structure seen in the order parameter.

Changing the value of the bare f -level does not change
qualitatively the results. The gap has a similar structure. There
is a peak with a value independent of ε f still locked at half-
filling, but the other two peaks are slightly displaced. Also
their values change. The order parameter changes slightly,
accordingly shifting to slightly smaller band-filling values as
the location of the f -level lowers in energy.
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Figure 4. � f and �c as a function of n for s-wave symmetry for two
different values of Jc and U = 3.

5. Pairing between the c-electrons

Even though the bare c-electrons are free and therefore have a
high mobility and low effective masses, through the coupling
to the heavy f -electrons, they may also pair. The results of
the previous section were obtained with no explicit pairing of
the c-electrons. Here we consider the possibility of c-electron
pairing in the mean-field Hamiltonian with the inclusion of
a second coupling constant Jc. Phenomenologically we may
consider this pairing as adding a term in the Hamiltonian
leading to

HMF =
∑

k,σ

(εk − μ)c†
k,σ ck,σ +

∑

k,σ

(ε̃ f − μ) f †
k,σ fk,σ

+ V
∑

k,σ

Z(c†
k,σ fk,σ + f †

k,σ ck,σ )

+ Z 2
∑

k

(�ηk f †
k,↑ f †

−k,↓ +�∗ηk f−k,↓ fk,↑)

+ U Ns d2 + Nsλ(e
2 + d2 + 2p2 − 1)

− Ns

∑

σ

λ̄(p2 + d2)− Ns
|�|2

J

+
∑

k

(�cη
c
kc†

k,↑c†
−k,↓ +�∗

cη
c
kc−k,↓ck,↑)

− Ns
|�c|2

Jc
. (11)

This extra term leads to modified BdG equations where the
Hamiltonian operator is now given by

H =

⎛

⎜⎜⎝

εk − μ V Z �cη
c
k 0

V Z ε̃ f − μ 0 Z 2�ηk

�cη
c
k 0 −(εk − μ) −V Z

0 Z 2�ηk −V Z −(ε̃ f − μ)

⎞

⎟⎟⎠ . (12)

Since there is no local repulsive coupling between the c-
electrons, we consider only a local s-wave pairing of the c-
electrons: ηc

k = 1.
In figures 4–7 we show the results for the two pairing

amplitudes �,�c. In the case of s-wave symmetry it can be
seen that qualitatively there is not much difference in the curves
for � f , with respect to the results of the previous section and
therefore changing Jc does not strongly affect the result. The

Figure 5. � f and �c as a function of n for s-wave symmetry for two
different values of Jc and U = 5.

Figure 6. � f and�c as a function of n for d-wave symmetry for two
different values of Jc and U = 3.

c-pairing order parameter is smaller but extends to lower band-
fillings, as expected. For d-wave symmetry, the dip in the
� f curves at around n = 2 is less pronounced. Note that
in this case �c also vanishes at small band-fillings. The two
order parameters follow similar trends in the case of s-wave
symmetry, displaying two maxima as a function of the band-
filling. In the case of d-wave pairing the peak at larger band-
fillings is absent in �c. We note however that the curves for
p, d and e remain qualitatively similar with the addition of the
extra pairing term. The boson mean-field condensed values do
not depend strongly on the symmetry of the order parameter.

In what follows we have therefore neglected such an
additional term to the Hamiltonian. That is, we have
considered Jc = 0, since it does not affect � in an important
way.

6. Critical temperature

It is perhaps more instructive to analyze the dependence
of the critical temperature as a function of the various
parameters. In BCS theory there is a close relation between the
superconducting order parameter and the critical temperature,
specifically, for a single-band model they are just proportional.
We recall however that in the Anderson model there are two
bands and superconductivity is competing with the strong
correlations and the hybridization between the bands.

5
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Figure 7. � f and�c as a function of n for d-wave symmetry for two
different values of Jc and U = 5.

Figure 8. Superconducting critical temperature as a function of n for
(a) s-wave and (b) d-wave symmetries.

In figure 8 we show the critical temperature as a
function of band-filling for various Coulomb couplings for
both symmetries. The trend is similar to the results obtained
for the order parameter. There is a significant depression
in the vicinity of half-filling (actually n f close to 1) with a
restoration of superconductivity for larger band-fillings, being
finally depressed when the bands are full. We also show
in figure 9 the dependence of Tc for s-wave symmetry as a
function of U where the flattening of the critical temperature is
noticeable emphasizing its stability as U increases. Also, we
consider the dependence with the hybridization. We see that
for small values of U and at small V the critical temperature
decreases, goes through a maximum and finally decreases for

Figure 9. Superconducting critical temperature as a function of (a) U
and (b) V for s-wave symmetry.

large enough hybridization. We note that for larger values of U
there is a tendency for the critical temperature to increase with
V for small values, in agreement with the results obtained [13]
with the slave boson method for U = ∞. This shows
some agreement between Coleman’s method and the finite-
U method. We note however that, as mentioned above,
the finite-U method, at least for the parameters chosen here,
yields values of n f that grow more slowly with the band-
filling, with the consequence that by increasing the value of
U superconductivity prevails for larger band-fillings.

One expects that a weak attractive interaction may not
be enough to yield superconductivity. This is shown for s-
wave symmetry in figure 10 where the critical temperature
as a function of n is considered for U = 3, 10 and smaller
values of the attractive coupling J = −2,−1.5,−1,−0.5.
As expected, as |J |/U decreases the superconducting region
decreases even for U = 3. Note that at n = 2 and smaller
values of J superconductivity vanishes. At these points the
gap has a contribution from a hybridization gap as discussed
before in [14].

7. Summary

In this work we have shown that in the finite-U slave boson
description [6] of the Anderson lattice, superconductivity
prevails in general for all values of the Coulomb repulsion.
In the case of extended s-wave symmetry either the
superconducting order parameter or the critical temperature
become very small, close to a band-filling of the order of

6
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Figure 10. Superconducting critical temperature as a function of n
for s-wave symmetry for different values of J .

n = 3, where n f → 1 and the chemical potential has a
discontinuity characteristic of insulating behavior. Beyond this
regime there is a high energy regime where pairing occurs
in the upper Hubbard band. This regime is not energetically
favorable at zero temperature. In the case of d-wave symmetry
something similar occurs, but in addition, there is another
vanishing point at half-filling (n = 2) where there is also a
jump in the chemical potential.

Heavy-fermion systems also display magnetic phases,
as stated above. Here we have only considered the
superconducting phase. Previous studies considered the
possibility of magnetic phases (without considering the
competition with superconductivity) and have shown that
close to half-filling and quarter-filling an antiferromagnetic
phase prevails [7, 15, 34] while in other cases one
expects spiral phases or ferromagnetic phases [17]. The
competition/coexistence of antiferromagnetism was also
considered previously in the case of U = ∞ and it was found
that close to half-filling antiferromagnetism is the most stable
phase while at lower band-fillings superconductivity prevails.
Also, the effect of applying pressure leads to the disappearance
of antiferromagnetism [19]. The results obtained here hold in
a regime where superconductivity is observed.
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